
Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address Parkburn Court Burnbank Hamilton Scotland ML3 0QQ	Local contact Barry Atkins	Dimensional and Electrical	A

Site activities performed away from the locations listed above:

Location details	Activity	Location code
At customer's premises	Dimensional	В
The customer's site or premises must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer.		

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	Cuthbertson & Laird Instruments Ltd, Trading as Cuthbertson Laird Group
0316 Accredited to ISO/IEC 17025:2017	Issue No: 044 Issue date: 31 March 2022

Calibration and Measurement Capability (CMC)

Expanded Measured Quantity Location Measurement Range Remarks Instrument or Gauge Code Uncertainty (k = 2)DIMENSIONAL RANGE IN MILLIMETRES AND UNCERTAINTY IN MICROMETRES CALIBRATIONS UNLESS OTHERWISE STATED LENGTH NOTES 1 All linear calibrations may be given in inch units. Plain Plug Gauges (Parallel) 1 to 50 diameter 0.80 Comparison to gauge Α 50 to 100 1.5 blocks using a length on diameter. 100 to 200 2.0 measuring machine. 200 to 300 3.0 Length Gauges, Flat and Spherical Ended (excluding 25 to 1000 Comparison to gauge 1.0 + (8.0 x length in m) А blocks using a length Length Bars) measuring machine. ANGLE The uncertainty quoted is for the 2 departure from flatness, straightness, parallelism or squareness, i.e., the distance separating the two parallel planes which just enclose the surface under consideration. 50 to 300 BS 939:2007 on squareness А Squares 3.0 Blade Type 300 to 450 5.0 See Note 2 Comparison to master square. MEASURING INSTRUMENTS AND MACHINES Micrometers Comparison to length standards External 0 to 1000 Heads 2.0 between any BS 870:2008 A two points Internal Micrometers 0 to 900 Setting and extension rods BS 959:2008 A 1.0 + (8.0 x length in m)**Depth Micrometers** 0 to 300 BS 6468:2008 A Vernier, dial and digital type Comparison to length Δ gauges standards. Calliper 0 to 1000 Overall performance As BS 887:2008 10 + (30 x length in m) 0 to 1000 Overall performance ISO13225:2012 and Height

10 + (10 x length in m)

Overall performance

10 + (30 x length in m)

BS 1643:2008

As BS 6365:2008

0 to 600

Depth

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK					
UKAS CALIBRATION 0316 Accredited to ISO/IEC 17025:2017	Cuthbertson & Laird Instruments Ltd, Trading as Cuthbertson Laird Group Issue No: 044 Issue date: 31 March 2022					
	Calibration performed by the O	rganisation at the locations s	pecified			
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code		
MEASURING INSTRUMENTS AND MACHINES (continued)						
Dial Gauges and Dial Test Indicators	0 to 50	1.0	BS 907:2008 and BS 2795:1981 using a length measuring machine.	А		
Surface Plates Granite Cast Iron	160 x 100 to 4000 x 4000 Flatness of working surface: Local variation of working	1.5 + (0.80 x diagonal in m) See Note 2	BS 817:2008 and above using an electronic level and variation gauge.	A and B		
Feeler Gauges	surface: 0.025 to 1.0	2.7 2.0	BS 957:2008 using a length measuring machine.	A		
ELECTRICAL CALIBRATIONS						
DC RESISTANCE Specific values				A		
Measurement	10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 1 GΩ 10 GΩ 100 GΩ 1 T Ω	14 μΩ/Ω 9.6 μΩ/Ω 8.0 μΩ/Ω 8.8 μΩ/Ω 9.6 μΩ/Ω 24 μΩ/Ω 110 μΩ/Ω 440 μΩ/Ω 0.40 % 0.59 % 2.0 % 1.4 %	Using digital multimeter.			
Other values Measurement	0 Ω to 1 Ω 1 Ω to 10 Ω 10 Ω to 100 Ω 100 Ω to 1 kΩ 1 kΩ to 10 kΩ 10 kΩ to 100 kΩ 100 kΩ to 100 kΩ 100 kΩ to 1 MΩ 1 MΩ to 10 MΩ 10 MΩ to 100 MΩ 100 MΩ to 1 GΩ	41 μΩ/Ω 41 μΩ/Ω 40 μΩ/Ω 10 μΩ/Ω 10 μΩ/Ω 29 μΩ/Ω 130 μΩ/Ω 450 μΩ/Ω 0.40 %	Using digital multimeter.	A		

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK				
O316 Accredited to ISO/IEC 17025:2017	Cuthbertson & Laird Instruments Ltd, Trading as Cuthbertson Laird Group Issue No: 044 Issue date: 31 March 2022				
	Calibration performed by the O	rganisation at the locations s	pecified		
				1	
Measured Quantity Instrument or Gauge	Range	Expanded Measurement	Remarks	Location Code	

	Uncertainty $(k = 2)$		Code
			A
10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ	420 μΩ 7.2 mΩ 20 mΩ 190 mΩ 2.3 Ω 39 Ω 1.4 kΩ 47 kΩ	Using multifunction calibrator or decade resistance box.	
			А
100 mV 1 V 10 V 100 V 1000 V	11 μV/V 9.4 μV/V 9.4 μV/V 12 μV/V 12 μV/V 12 μV/V	Using digital multimeter.	
0 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 1000 V	2.5 μV 10 μV/V 9.5 μV/V 12 μV/V 12 μV/V	Using digital multimeter.	
1 kV to 20 kV 20 kV to 38 kV	1.3 % 1.2 %	Using high voltage divider.	
0 mV to 220 mV 220 mV to 2.2 V 2.2 V to 11 V 11 V to 22 V 22 V to 220 V 220 V to 1000 V	10 μ V/V + 9.0 μ V 13 μ V/V + 1.4 μ V 15 μ V/V + 4.6 μ V 15 μ V/V + 9.2 μ V 18 μ V/V + 0.12 mV 18 μ V/V + 0.69 mV	Using multifunction calibrator.	
			А
1 μΑ 10 μΑ 100 μΑ 1 mA 10 mA 100 mA 1 A	45 μΑ/Α 25 μΑ/Α 24 μΑ/Α 24 μΑ/Α 24 μΑ/Α 41 μΑ/Α 87 μΑ/Α	Using digital multimeter.	
	100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 10 MΩ 100 MΩ 100 MΩ 100 MΩ 100 V 100 V 11 V 11 V 120 V 220 V 220 V 100 V	10 Ω 420 μΩ 100 Ω 7.2 mΩ 1 kΩ 20 mΩ 10 kΩ 190 mΩ 100 kΩ 2.3 Ω 1 MΩ 39 Ω 10 MΩ 1.4 kΩ 100 MΩ 47 kΩ 100 MΩ 47 kΩ 100 MΩ 1.4 kΩ 100 MΩ 1.4 kΩ 100 MΩ 12 μV/V 100 V to 100 V 12 μV/V 100 V to 100 V 12 μV/V 10 V to 100 V 12 μV/V 10 V to 100 V 12 μV/V 10 μV to 220 kV 13 μV/V + 1.4 μV 2.2 V to 11 V 15 μV/V + 9.0 μV 12 ωV to 1000 V 18 μV/V + 0.69 mV 220 V to 1000 V 18 μV/V + 0.69 mV 10 μA 25 μA/A 100 μA 24 μA/A 10 μA 24 μA	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK				
UKAS CALIBRATION 0316 Accredited to ISO/IEC 17025:2017	Cuthbertson & Laird Instruments Ltd, Trading as Cuthbertson Laird Group Issue No: 044 Issue date: 31 March 2022				
(Calibration performed by the Or	ganisation at the locations s	pecified		
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code	
DC CURRENT (continued)				А	
Measurement (continued) Other values	0 μ A to 1 μ A 1 μ A to 10 μ A 10 μ A to 100 μ A 100 μ A to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A	320 pA 82 µA/A 67 µA/A 46 µA/A 46 µA/A 57 µA/A 120 µA/A	Using digital multimeter.		
Generation	0 µA to 220 µA 220 µA to 2.2 mA 2.2 mA to 22 mA 22 mA to 220 mA 220 mA to 2.2 A 2.2 A to 11 A	110 μA/A + 12 nA 83 μA/A + 12 nA 19 μA/A + 12 nA 140 μA/A + 12 nA 180 μA/A + 12 nA 0.10 %	Using multifunction calibrator.	A	
	11 A to 200 A 200 to 550 A 550 to 1000 A	200 μA/A + 0.16 A 0.10 % + 0.50 A 0.10 % + 0.85 A	For the calibration of clamp on ammeters and similar devices, using multi-turn method.		
AC VOLTAGE				А	
Measurement Specific values	<i>At 1 kHz</i> 10 mV 100 mV	190 μV/V 73 μV/V	Using digital multimeter.		
	40 Hz to 1 kHz 1 V 10 V 100 V 700 V	64 μV/V 65 μV/V 160 μV/V 310 μV/V			
	1 kHz to 100 kHz 1 V 10 V 100 V	620 μV/V 620 μV/V 930 μV/V		A	
Other values	At 1 kHz 1 mV to 10 mV 10 mV to 100 mV 100 mV to 1 V	0.090 % 0.020 % 0.020 %	Using digital multimeter.		
	40 Hz to 1 kHz 1 V to 10 V 10 V to 100 V 100 V to 700 V 700 V to 1 kV	0.020 % 0.022 % 0.035 % 0.23 %			
	1 kHz to 100 kHz 100 mV to 1 V 1 V to 10 V 10 V to 100 V	0.064 % 0.064 % 0.10 %			

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK				
UKAS CALIBRATION 0316 Accredited to ISO/IEC 17025:2017	Cuthbertson & Laird Instruments Ltd, Trading as Cuthbertson Laird Group Issue No: 044 Issue date: 31 March 2022				
	Calibration performed by the C	rganisation at the locations s	pecified		
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code	
AC VOLTAGE (continued)				A	
Measurement (continued)	<i>At 50 Hz</i> 1 kV to 20 kV 20 kV to 28 kV	2.1 % 3.0 %	Using high voltage divider.		
Generation	<i>At 1 kHz</i> 22 µV to 2.2 mV 2.2 mV to 22 mV 22 mV to 220 mV	0.090 % + 5.8 μV 0.024 % + 7.0 μV 0.027 % + 12 μV	Using multifunction calibrator.		
	40 Hz to 20 kHz 220 mV to 2.2 V 2.2 V to 22 V 22 V to 220 V 220 V to 700 V	0.022 % + 8.0 μV 0.024 % + 81 μV 0.036 % + 1.2 mV 0.23 % + 11 mV			
AC CURRENT				A	
Measurement Specific Values	<i>At 1 kHz</i> 100 μΑ 1 mA	0.056 % 0.051 %	Using digital multimeter.		
	<i>45 Hz to 1 kHz</i> 10 mA 100 mA 1 A	0.050 % 0.050 % 0.080 %			
Other values	<i>At 1 kHz</i> 5 μA to 100 μA 100 μA to 1 mA	0.24 % 0.16 %	Using digital multimeter.		
	45 Hz to 1 kHz 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A	0.16 % 0.16 % 0.18 %			
Generation	<i>At 1 kHz</i> 9 μA to 220 μA 220 μA to 2.2 mA	0.18 % + 23 nA 0.16 % + 47 nA	Using multifunction calibrator.		
	45 Hz to 1 kHz 2.2 mA to 22 mA 22 mA to 220 mA 220 mA to 2.2 A 1 A to 2.2 A 2.2 A to 11 A	0.16 % + 1.0 μA 0.18 % + 4.6 μA 0.16 % + 46 μA 0.13 % 0.90 %			
	11 A to 200 A 200 A to 550 A	0.60 A 1.7 A	For the calibration of clamp on ammeters and similar devices, using multi-turn method.		

Г

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK Cuthbertson & Laird Instruments Ltd, Trading as Cuthbertson Laird Group Issue No: 044 Issue date: 31 March 2022				
UKAS CALIBRATION 0316 Accredited to ISO/IEC 17025:2017					
С	alibration performed by the Or	ganisation at the locations s	pecified		
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code	

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
FREQUENCY	1 Hz to 1 MHz 1 MHz to 2.1 GHz	21 in 10 ⁸ + 2.0 mHz 21 in 10 ⁸	Using frequency counter.	A A
Tachometer calibration	10 rpm to 50000 rpm	1.2 rpm	Using optical technique.	
Elapsed time	0 ms to 390 ms 391 ms to 100 s	1.0 ms 8.0 ms	Using counter timer.	А
17 TH EDITION TYPE EQUIPMENT Earth Loop RCD testers Trip current	0.05 Ω 0.1 Ω 0.22 Ω 0.33 Ω 0.5 Ω 1 Ω 5 Ω 10 Ω 100 Ω 1 kΩ <i>At 50 Hz</i> 2 m ^A to 10 m ^A	10 mΩ 11 mΩ 8.0 mΩ 8.0 mΩ 10 mΩ 30 mΩ 59 mΩ 580 mΩ 5.8 mΩ	Using dedicated calibrator.	A
Trip Time	3 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A 1 A to 3 A <i>At 30 mA, 50 Hz</i> 10 ms to 390 ms	620 μA 5.8 mA 59 mA 120 mA 1.0 ms	Up to 5 seconds.	
	390 ms to 1 s	8.1 ms		
Earth leakage current	0.2 mA to 7.7 mA	15 μΑ		А
PAT Testers Earth bond current	<i>At 50 Hz</i> 100 mA 100 mA to 10 A 10 A to 30 A	8.0 mA 190 mA 520 mA		А
Earth Bond resistance Nominal values	0.05 Ω 0.1 Ω 0.22 Ω 0.33 Ω 1 Ω 5 Ω 10 Ω 100 Ω 1 kΩ	7.5 mΩ 7.5 mΩ 7.6 mΩ 7.7 mΩ 8.0 mΩ 9.5 mΩ 30 mΩ 58 mΩ 580 mΩ 5.8 Ω		A

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK				
0316 Accredited to ISO/IEC 17025:2017	Tra	Anthbertson & Laird Instruments Ltd, Tading as Cuthbertson Laird Group Und No: 044 Issue date: 31 March 2022			
	Calibration performed by the C	rganisation at the locations s	pecified		
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code	
17 TH EDITION TYPE EQUIPMENT	(continued)			A	
Insulation resistance Nominal source values	100 kΩ 500 kΩ 1 MΩ 5 MΩ 10 MΩ 20 MΩ 50 MΩ 100 MΩ	12 kΩ 12 kΩ 12 kΩ 21 kΩ 37 kΩ 72 kΩ 180 kΩ 350 kΩ			
Load Tests	3 kVA	2.5 %		А	
Flash tests	<i>At 50 Hz</i> 700 V to 1.9 kV	1.5 % + 5.0 V			
ELECTRICAL SIMULATION OF T	EMPERATURE			A	
Ambient temperature	17 °C to 23 °C	0.11 °C	In support of cold junction measurements.		
Temperature simulators and indicators, calibration by electrical simulation					
Base metal thermocouples	-200 °C to -100 °C	0.47 °C	Excluding cold junction compensation.		
	0 °C to +1370 °C	0.36 °C	Excluding cold junction compensation.		
	-200 °C to -100 °C	0.47 °C	Including cold junction compensation.		
	-100 °C to +1300 °C	0.38 °C	Including cold junction compensation.		
Noble metal thermocouples	0 °C to 1700 °C	1.8 °C	Excluding cold junction compensation.		
	0 °C to 1700 °C	1.8 °C	Including cold junction compensation.		
		END			

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where *q* is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: $Q[a, b] = [a^2 + b^2]^{1/2}$